Uranium Interaction with Two Multi-Resistant Environmental Bacteria: Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris
نویسندگان
چکیده
Depending on speciation, U environmental contamination may be spread through the environment or inversely restrained to a limited area. Induction of U precipitation via biogenic or non-biogenic processes would reduce the dissemination of U contamination. To this aim U oxidation/reduction processes triggered by bacteria are presently intensively studied. Using X-ray absorption analysis, we describe in the present article the ability of Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris, highly resistant to a variety of metals and metalloids or to organic pollutants, to withstand high concentrations of U and to immobilize it either through biosorption or through reduction to non-uraninite U(IV)-phosphate or U(IV)-carboxylate compounds. These bacterial strains are thus good candidates for U bioremediation strategies, particularly in the context of multi-pollutant or mixed-waste contaminations.
منابع مشابه
Purification and characterization of the acetone carboxylase of Cupriavidus metallidurans strain CH34.
Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α(2)β(2)γ(2) and can carboxylate only acetone and 2-butanone in an ATP-depen...
متن کاملAmine- and carboxyl- quantum dots affect membrane integrity of bacterium Cupriavidus metallidurans CH34.
The present study examines the interaction of amine- and carboxyl- PEG core/shell quantum dots (QDs) with metal resistant bacterium Cupriavidus metallidurans CH34. The evolution of the number of QDs, their hydrodynamic radius, diffusion coefficients, and single particle fluorescence were characterized before and during the contact with bacterium by fluorescence correlation spectroscopy (FCS). T...
متن کاملCharacterization of the Metabolically Modified Heavy Metal-Resistant Cupriavidus metallidurans Strain MSR33 Generated for Mercury Bioremediation
BACKGROUND Mercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds. METHODOLOGY/PRINCIPAL FINDINGS To improve inorganic and organic mercury resistance o...
متن کاملThe Complete Genome Sequence of Cupriavidus metallidurans Strain CH34, a Master Survivalist in Harsh and Anthropogenic Environments
Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrati...
متن کاملModeling of Cd uptake and efflux kinetics in metal-resistant bacterium Cupriavidus metallidurans.
The Model of Uptake with Instantaneous Adsorption and Efflux, MUIAE, describing and predicting the overall Cd uptake by the metal-resistant bacterium Cupriavidus metallidurans CH34, is presented. MUIAE takes into account different processes at the bacteria-medium interface with specific emphasis on the uptake and efflux kinetics and the decrease in bulk metal concentration. A single set of eigh...
متن کامل